Reaction of 5-Aryloxytetrazoles with Dimethyl Sulfoxide and DMSO-Acetic Anhydride. Structure and Quantum-Chemical Calculations of 1-Methylsulfanylmethyl-5-(4-nitrophenoxy)tetrazole*

H. A. Dabbagh ${ }^{1}$, N. Noroozi Pesyan ${ }^{1}$, A. Bagheri ${ }^{1}$, S. Takemo ${ }^{2}$, and H. Hayashi ${ }^{3}$
${ }^{1}$ College of Chemistry, Isfahan University of Technology, 84155, Isfahan, Iran dabbagh@cc.iut.ac.ir
${ }^{2}$ Department of Chemistry, Osaka Prefecture University, 599-8531, Osaka, Japan
${ }^{3}$ Department of Natural Product Chemistry, School of Agriculture and Biological Science, Osaka Prefecture University, 599-8531, Osaka, Japan

Received October 3, 2004

Abstract

Decomposition of methyl 5-(4-nitrophenoxy)tetrazole-2-carboxylate in dimethyl sulfoxide at room temperature yields a mixture of 1-methylsulfanylmethyl-5-(4-nitrophenoxy)tetrazole, 1 - and 2-methyl-5-(4nitrophenoxy)tetrazoles, and 5-(4-nitrophenoxy)tetrazole. Methyl 5-aryloxytetrazole-2-carboxylates containing electron-donor substituents in the aryloxy group do not give rise to the corresponding products under analogous conditions. The reactions of 5 -aryloxytetrazoles $\left[\mathrm{Ar}=4-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}, \mathrm{C}_{6} \mathrm{H}_{5}, 2,6-(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right.$] with dimethyl sulfoxide in the presence of acetic anhydride lead to mixtures of 1- and 2-methylsulfanylmethyl-5-aryloxytetrazoles whose yield and ratio depend on the substituent in the aryloxy group. The structure of 1-methyl-sulfanylmethyl-5-(4-nitrophenoxy)tetrazole was studied by X-ray analysis, two-dimensional NMR spectroscopy (HSQC, HMBC, NOESY), and quantum-chemical methods (ab initio, AM1, PM3). A highly selective procedure was developed for the synthesis of 5-(4-nitrophenoxy)tetrazole.

Numerous tetrazole derivatives exhibit versatile biological activity due to the fact that the tetrazole ring is a metabolically stable replacement of carboxylic functionality [1]. Tetrazoles undergo various reactions such as alkylation and acylation, complex formation with metals, thermolysis, photolysis, decomposition with formation of nitrenes, etc. [2-11]. We previously studied interconversions of 1,5 - and 2,5 -substituted tetrazoles $[2-4,12-14]$ and showed that $1-$ and 2-alkoxycarbonyltetrazoles occur in equilibrium with the corresponding imidoyl azides. The state of the equilibrium depends on the solvent, temperature, and electron-acceptor power of functional group attached to the tetrazole ring.

It is known that dimethyl sulfoxide- N, N^{\prime}-dicyclohexylcarbodiimide (DMSO-DCC) in the presence of a source of protons is a mild and efficient reagent for oxidation of alcohols to the corresponding carbonyl compounds (Pfitzner-Moffatt reaction) [15] and introduction of a methylsulfanylmethyl group into the ortho

[^0]position of phenols [16-18]. Subsequently, a number of other reagents based on DMSO and sulfides have been proposed for methylsulfanylmethylation of phenols and anilines, e.g., DMSO-acetic anhydride [19], DMSO-trifluoroacetic anhydride [20], DMSO-oxalyl chloride (Swern reaction) [21], methyl sulfide-tertbutyl hypochlorite [22, 23], etc.

In the present work we examined reactions of 5-aryloxytetrazoles [$\mathrm{Ar}=4-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}, \mathrm{Ph}, 2,6-(\mathrm{MeO})_{2^{-}}$ $\mathrm{C}_{6} \mathrm{H}_{3}$] with DMSO and DMSO-acetic anhydride with a view to introduce a methylsulfanylmethyl group into position 1 or 2 of the tetrazole ring. We previously showed [4, 14] that methyl 5-aryloxytetrazole-2-carboxylates readily undergo isomerization to produce an equilibrium mixture of methyl 5-aryloxytetrazole1 - and -2-carboxylates and that decarboxylation of the latter in the solid phase or in a polar solvent (DMSO, DMF, MeCN) yields 1- and 2-methyl-5-aryloxytetrazoles, respectively (Scheme 1). Surprisingly, in the reaction of methyl 5-(4-nitrophenoxy)tetrazole-2-carboxylate (Ia) with DMSO we isolated 1-methylsulfanyl-methyl-5-(4-nitrophenoxy)tetrazole (VIa) in 20-30\%

Scheme 1.

I

II

IV
in the aryloxy group failed to produce the corresponding methylsulfanylmethyl derivatives VIb-VIf.

The reaction mechanism resembles that typical of Swern oxidation. There are three evidences in support of a concerted addition-elimination path shown in Scheme 2. First, no 2-methylsulfanylmethyl-5-(4-nitrophenoxy)tetrazole (VIIa) is formed in the reaction; second, methanol is released; and third, carbonyl absorption band disappears from the IR spectrum. Ionic intermediates like \mathbf{E} can be ruled out; otherwise, a mixture of VIa and VIIa would be obtained (Scheme 3).

Methylsulfanylmethylation of 5-aryloxytetrazoles $\mathbf{V a}, \mathbf{V b}$, and Vf in the system dimethyl sulfoxideacetic anhydride at $55-60^{\circ} \mathrm{C}$ (reaction time 24 h) afforded mixtures of 1- and 2-methylsulfanylmethyl derivatives VIa, VIb, VIf and VIIa, VIIb, VIIf (Scheme 4). Here, two very important observations should be noted. In all cases, methylsulfanylmethylation at position l of the tetrazole ring predominates over 2-methylsulfanylmethylation: the ratios of the 1 - and 2 -substituted isomers are $1.5,1.63$, and 1.75 for $\mathrm{Ar}=4-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}, \mathrm{C}_{6} \mathrm{H}_{5}$, and $2,6-(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{3}$, respectively. Electron-withdrawing substituent in the 5 -aryloxy group favors the methylsulfanylmethylation process: the overall yields of the products are 50,42 , and

Scheme 2.

Scheme 3.

Scheme 4.

Scheme 5.

22% for $\mathrm{Ar}=4-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}, \mathrm{C}_{6} \mathrm{H}_{5}$, and $2,6-(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{3}$, respectively. These data support our previous prediction that the reaction with DMSO of Ia containing an electron-withdrawing yields only isomer VIa and that no analogous product is formed from $\mathbf{I b}-\mathbf{I f}$. The formation of 2-substituted isomers may be regarded as an additional support for the mechanism shown in Scheme 2. An alternative mechanism (Scheme 5) is operative in the system DMSO-acetic anhydride; in this case, a mixture of VI and VII is obtained.

The structure of 1-methylsulfanylmethyl-5-(4-nitrophenoxy)tetrazole (VIa) was elucidated by the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ (including two-dimensional HSQC, HMBC, NOESY techniques), IR, and mass spectra and elemental analysis. The HSQC spectrum shows correlations between the $\mathrm{CH}_{3} \mathrm{~S}$ protons ($\mathrm{H}^{1}, \delta 2.326 \mathrm{ppm}$) and $\mathrm{C}^{1}\left(\delta_{\mathrm{C}} 15.53 \mathrm{ppm}\right), \mathrm{SCH}_{2}$ protons ($\mathrm{H}^{2}, \delta 5.32 \mathrm{ppm}$) and $\mathrm{C}^{2}\left(\delta_{\mathrm{C}} 49.21 \mathrm{ppm}\right), \mathrm{H}^{3}(\delta 7.70 \mathrm{ppm})$ and C^{9}, and $\mathrm{H}^{4}(\delta 8.36 \mathrm{ppm})$ and C^{8}. In the HMBC spectrum (Fig. 1a-1c), a long-range correlation between H^{1} ($\delta 2.326 \mathrm{ppm}$) and $\mathrm{C}^{2}\left(\delta_{\mathrm{C}} 49.21 \mathrm{ppm}\right.$) was observed, while no correlations between the same proton and the other carbon atoms in molecule VIa were found. The SCH_{2} protons correlate with both $\mathrm{C}^{1}\left(\delta_{\mathrm{C}} 15.53 \mathrm{ppm}\right)$ and $\mathrm{C}^{3}\left(\delta_{\mathrm{C}} 158.56 \mathrm{ppm}\right)$. The NOESY spectra revealed couplings between H^{1} and H^{2} in the methylsulfanylmethyl group and between H^{3} and H^{4} in the benzene ring. Thus, the ${ }^{1} \mathrm{H}^{13} \mathrm{C}$ HMBC correlation spectra indicate that the methylsulfanylmethyl group is attached to the N^{1} atom of the tetrazole ring. The $\mathrm{IR},{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, and mass spectral data of compounds VIa, VIb, VIf, VIIa, VIIb, and VIIf are given in Experimental.

The structure of VIa was also analyzed by X-ray crystallography (Fig. 2). The bond lengths, bond angles, and torsion angles in molecule VIa are given in Tables 1-3. The tetrazole ring in VIa is planar, and the p-nitrophenoxy group deviates from the tetrazole ring plane so that the torsion angles $\mathrm{C}^{5} \mathrm{C}^{4} \mathrm{O}^{1} \mathrm{C}^{3}$ and $\mathrm{C}^{4} \mathrm{O}^{1} \mathrm{C}^{3} \mathrm{~N}^{4}$ are $68.6(3)^{\circ}$ and 8.1(4) ${ }^{\circ}$, respectively. The torsion angle $\mathrm{O}^{1} \mathrm{C}^{4} \mathrm{C}^{5} \mathrm{C}^{6}$ equal to $173.6(2)^{\circ}$ implies steric interaction between the benzene and tetrazole rings. The $\mathrm{N}^{1}-\mathrm{C}^{2}$ and $\mathrm{C}^{5}-\mathrm{O}^{1}$ bonds (in the methylsulfanylmethyl and p-nitrophenoxy groups) are not coplanar: the dihedral angle $\mathrm{C}^{2} \mathrm{~N}^{1} \mathrm{C}^{3} \mathrm{O}^{1}$ is $5.1(4)^{\circ}$. Surprisingly, a weak resonance is observed between the O^{1} atom and electron-withdrawing nitro group in the para position of the benzene ring (structure $\mathbf{V I a}_{2}$ in

Table 1. Bond lengths (d) in the molecule of 1 -methylsul-fanylmethyl-5-(4-nitrophenoxy)tetrazole (VIa) ${ }^{\text {a }}$

Bond	d, \AA	Bond	d, \AA
$\mathrm{~N}^{5}-\mathrm{O}^{2}$	$1.189(4)$	$\mathrm{O}^{1}-\mathrm{C}^{3}$	$1.324(3)$
$\mathrm{N}^{5}-\mathrm{O}^{3}$	$1.198(4)$	$\mathrm{C}^{3}-\mathrm{N}^{1}$	$1.326(3)$
$\mathrm{N}^{5}-\mathrm{C}^{7}$	$1.474(3)$	$\mathrm{N}^{1}-\mathrm{N}^{2}$	$1.348(3)$
$\mathrm{C}^{7}-\mathrm{C}^{8}$	$1.371(4)$	$\mathrm{N}^{2}-\mathrm{N}^{3}$	$1.287(3)$
$\mathrm{C}^{8}-\mathrm{C}^{9}$	$1.375(4)$	$\mathrm{N}^{3}-\mathrm{N}^{4}$	$1.364(3)$
$\mathrm{C}^{9}-\mathrm{C}^{4}$	$1.361(3)$	$\mathrm{N}^{4}-\mathrm{C}^{3}$	$1.304(3)$
$\mathrm{C}^{4}-\mathrm{C}^{5}$	$1.369(3)$	$\mathrm{N}^{1}-\mathrm{C}^{2}$	$1.453(3)$
$\mathrm{C}^{5}-\mathrm{C}^{6}$	$1.375(4)$	$\mathrm{C}^{2}-\mathrm{S}^{1}$	$1.788(3)$
$\mathrm{C}^{6}-\mathrm{C}^{7}$	$1.368(4)$	$\mathrm{S}^{1}-\mathrm{C}^{1}$	$1.790(3)$
$\mathrm{C}^{4}-\mathrm{O}^{1}$	$1.403(3)$		

[^1]

Fig 1. HMBC ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ correlation spectra of 1-methylsulfanylmethyl-5-(4-nitrophenoxy)tetrazole (VIa) (expanded aliphatic region): (a) $1-\mathrm{H}-\mathrm{C}^{2}$ correlation, (b) $2-\mathrm{H}-\mathrm{C}^{1}$ correlation, and (c) $2-\mathrm{H}-\mathrm{C}^{3}$ correlation.
(a) Scheme 6). Instead, the O^{1} atom is involved in conjugation with the tetrazole ring $\left(\mathbf{V I a}_{1}\right)$. The $\mathrm{O}^{1}-\mathrm{C}^{3}$ bond $\left[1.324(3) \AA\right.$ is is shorter than $\mathrm{C}^{4}-\mathrm{O}^{1}$ [1.402(3) \AA, Table 1]. These findings contradict our earlier conclusion that a strong electron-withdrawing substituent in position 5 should affect the electron density distribution over the tetrazole ring [13]. The results obtained by ab initio, AM1, and PM3 quantum-chemical calculations of molecules VIa and VIIa complement the experimental X-ray diffraction data (Tables 4-6).

Scheme 6.

Compound Va was synthesized by Martin and Weise [24] in an overall yield of less than 10% by reaction of p-nitrophenol with cyanogen bromide, followed by treatment of p-nitrophenyl cyanate with sodium azide. We have developed a new highly selective procedure for the synthesis of 5-(4-nitrophenoxy)tetrazole (Va) via direct nitration of 5-phenoxytetrazole Vb (Scheme 7). Tetrazole Vb was prepared in 70% yield by the procedure described previously [4, 13]. The nitration of $\mathbf{V b}$ with fuming nitric acid
afforded 90% of Va, and the product contained no impurities of meta and ortho isomers. Obviously, the presence of a bulky tetrazolyl substituent prevents nitration of $\mathbf{V b}$ at the ortho position.

Scheme 7.

EXPERIMENTAL

The ${ }^{1} \mathrm{H}$ NMR spectra were recorded on Varian EM390 (90 MHz), Jeol JNM $\alpha-500(500 \mathrm{MHz}$), and Bruker 500 Ultra Shield (500 MHz) spectrometers. The ${ }^{13} \mathrm{C}$ NMR spectra (125 MHz) were measured on Jeol JNM α-500 and Bruker 500 Ultra Shield instruments. The mass spectra were obtained using a Fision Trio 1000 GC-MS system. The IR spectra were recorded on Perkin-Elmer 1760X and Shimadzu IR-470 Fourier spectrometers. The elemental compositions were determined at the Research Institute of Petroleum Industry (Pazhouheshgah Bld., Qom Road, Tehran, Iran). The melting points were determined using a Gallenkamp apparatus and were not corrected. AM1, PM3, and $a b$ initio (STO-3G) quantum-chemical calculations were performed using HyperChem Pro 6.0 software with optimization according to the PolakRibier algorithm.

2,6-Dimethoxyphenol, 4-methoxyphenol, 4-methylphenol, 2,6-dimethylphenol, phenol, bromine, sodium cyanide, dimethyl sulfoxide, sodium azide, and fuming nitric acid were commercial products and were used without additional purification. Cyanogen bromide [25] and phenyl cyanate [26] were synthesized by known methods. The solvents were purified by standard procedures prior to use.

Fig. 2. Structure of the molecule of 1-methylsulfanylmethyl-5-(4nitrophenoxy)tetrazole (VIa) according to the X-ray diffraction data.

X-Ray analysis of compound (VIa). Crystals of VIa were obtained by slow evaporation of a solution of VIa in a mixture of ethyl acetate and cyclohexane at room temperature. A suitable single crystal was sealed in a glass capillary. The data were acquired using a Rigaku RAXIS-Rapid diffractometer and were processed using Rigaku Rapid-auto program. Empirical corrections for absorption and Lorentz polarization were applied. Orthorhombic crystals, $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{~N}_{5} \mathrm{O}_{3} \mathrm{~S}$, M 267.27. Unit cell parameters at 296(2) K: $a=$ 12.2341(13), $b=7.6350(8), c=25.428$ (3) $\AA ; \alpha=\beta=$ $\gamma=90^{\circ} ; V=2375.2(5) \AA^{3}$; space group Pbca (no. 61); $Z=8 ; \mu=0.282 \mathrm{~mm}^{-1}$. Total reflection number 19309 ($\lambda=0.71075 \AA$); number of independent reflections 2692 ($R_{\text {int }}=0.0630$); final divergence factors [$I>$ $2 \sigma(I)]: R_{1}=0.0499, w R_{2}=0.1330$. The structure was solved by the direct method using Crystal Structure

Table 2. Bond angles (ω) in the molecule of 1-methylsul-fanylmethyl-5-(4-nitrophenoxy)tetrazole (VIa)

Angle	$\omega, \operatorname{deg}$	Angle	ω, deg
$\mathrm{C}^{2} \mathrm{~S}^{1} \mathrm{C}^{1}$	$99.79(14)$	$\mathrm{N}^{4} \mathrm{C}^{3} \mathrm{~N}^{1}$	$111.3(2)$
$\mathrm{C}^{3} \mathrm{O}^{1} \mathrm{C}^{4}$	$118.43(18)$	$\mathrm{O}^{1} \mathrm{C}^{3} \mathrm{~N}^{1}$	$118.9(2)$
$\mathrm{C}^{3} \mathrm{~N}^{1} \mathrm{~N}^{2}$	$106.85(18)$	$\mathrm{C}^{9} \mathrm{C}^{4} \mathrm{C}^{5}$	$122.6(2)$
$\mathrm{C}^{3} \mathrm{~N}^{1} \mathrm{C}^{2}$	$129.8(2)$	$\mathrm{C}^{9} \mathrm{C}^{4} \mathrm{O}^{1}$	$116.8(2)$
$\mathrm{N}^{2} \mathrm{~N}^{1} \mathrm{C}^{2}$	$123.21(19)$	$\mathrm{C}^{5} \mathrm{C}^{4} \mathrm{O}^{1}$	$120.3(2)$
$\mathrm{N}^{3} \mathrm{~N}^{2} \mathrm{~N}^{1}$	$106.64(18)$	$\mathrm{C}^{4} \mathrm{C}^{5} \mathrm{C}^{6}$	$118.9(2)$
$\mathrm{N}^{2} \mathrm{~N}^{3} \mathrm{~N}^{4}$	$111.41(18)$	$\mathrm{C}^{7} \mathrm{C}^{6} \mathrm{C}^{5}$	$118.3(2)$
$\mathrm{C}^{3} \mathrm{~N}^{4} \mathrm{~N}^{3}$	$103.85(19)$	$\mathrm{C}^{6} \mathrm{C}^{7} \mathrm{C}^{8}$	$122.8(2)$
$\mathrm{O}^{3} \mathrm{~N}^{5} \mathrm{O}^{2}$	$123.7(3)$	$\mathrm{C}^{6} \mathrm{C}^{7} \mathrm{~N}^{5}$	$118.9(2)$
$\mathrm{O}^{3} \mathrm{~N}^{5} \mathrm{C}^{7}$	$118.8(3)$	$\mathrm{C}^{8} \mathrm{C}^{7} \mathrm{~N}^{5}$	$118.3(2)$
$\mathrm{O}^{2} \mathrm{~N}^{5} \mathrm{C}^{7}$	$117.5(3)$	$\mathrm{C}^{7} \mathrm{C}^{8} \mathrm{C}^{9}$	$118.5(2)$
$\mathrm{N}^{1} \mathrm{C}^{2} \mathrm{~S}^{1}$	$114.49(17)$	$\mathrm{C}^{4} \mathrm{C}^{9} \mathrm{C}^{8}$	$118.9(2)$
$\mathrm{N}^{4} \mathrm{C}^{3} \mathrm{O}^{1}$	$129.8(2)$		

Table 3. Torsion angles (φ) in the molecule of 1-methylsul-fanylmethyl-5-(4-nitrophenoxy)tetrazole (VIa)

Angle	φ, deg	Angle	φ, deg
$\mathrm{C}^{3} \mathrm{~N}^{1} \mathrm{~N}^{2} \mathrm{~N}^{3}$	$0.8(2)$	$\mathrm{C}^{3} \mathrm{O}^{1} \mathrm{C}^{4} \mathrm{C}^{5}$	$68.6(3)$
$\mathrm{C}^{2} \mathrm{~N}^{1} \mathrm{~N}^{2} \mathrm{~N}^{3}$	$177.4(2)$	$\mathrm{C}^{9} \mathrm{C}^{4} \mathrm{C}^{5} \mathrm{C}^{6}$	$-0.2(4)$
$\mathrm{N}^{1} \mathrm{~N}^{2} \mathrm{~N}^{3} \mathrm{~N}^{4}$	$-0.4(3)$	$\mathrm{O}^{1} \mathrm{C}^{4} \mathrm{C}^{5} \mathrm{C}^{6}$	$173.6(2)$
$\mathrm{N}^{2} \mathrm{~N}^{3} \mathrm{~N}^{4} \mathrm{C}^{3}$	$-0.1(3)$	$\mathrm{C}^{4} \mathrm{C}^{5} \mathrm{C}^{6} \mathrm{C}^{7}$	$-0.2(4)$
$\mathrm{C}^{3} \mathrm{~N}^{1} \mathrm{C}^{2} \mathrm{~S}^{1}$	$-101.3(3)$	$\mathrm{C}^{5} \mathrm{C}^{6} \mathrm{C}^{7} \mathrm{C}^{8}$	$0.7(4)$
$\mathrm{N}^{2} \mathrm{~N}^{1} \mathrm{C}^{2} \mathrm{~S}^{1}$	$82.9(3)$	$\mathrm{C}^{5} \mathrm{C}^{6} \mathrm{C}^{7} \mathrm{~N}^{5}$	$-179.3(3)$
$\mathrm{C}^{1} \mathrm{~S}^{1} \mathrm{C}^{2} \mathrm{~N}^{1}$	$73.1(2)$	$\mathrm{O}^{3} \mathrm{~N}^{5} \mathrm{C}^{7} \mathrm{C}^{6}$	$0.3(4)$
$\mathrm{N}^{3} \mathrm{~N}^{4} \mathrm{C}^{3} \mathrm{O}^{1}$	$177.9(3)$	$\mathrm{O}^{2} \mathrm{~N}^{5} \mathrm{C}^{7} \mathrm{C}^{6}$	$-179.9(3)$
$\mathrm{N}^{3} \mathrm{~N}^{4} \mathrm{C}^{3} \mathrm{~N}^{1}$	$0.6(3)$	$\mathrm{O}^{3} \mathrm{~N}^{5} \mathrm{C}^{7} \mathrm{C}^{8}$	$-179.6(3)$
$\mathrm{C}^{4} \mathrm{O}^{1} \mathrm{C}^{3} \mathrm{~N}^{4}$	$8.1(4)$	$\mathrm{O}^{2} \mathrm{~N}^{5} \mathrm{C}^{7} \mathrm{C}^{8}$	$0.1(4)$
$\mathrm{C}^{4} \mathrm{O}^{1} \mathrm{C}^{3} \mathrm{~N}^{1}$	$-174.8(2)$	$\mathrm{C}^{6} \mathrm{C}^{7} \mathrm{C}^{8} \mathrm{C}^{9}$	$-0.8(4)$
$\mathrm{N}^{2} \mathrm{~N}^{1} \mathrm{C}^{3} \mathrm{~N}^{4}$	$-0.9(3)$	$\mathrm{N}^{5} \mathrm{C}^{7} \mathrm{C}^{8} \mathrm{C}^{9}$	$179.2(2)$
$\mathrm{C}^{2} \mathrm{~N}^{1} \mathrm{C}^{3} \mathrm{~N}^{4}$	$-177.2(2)$	$\mathrm{C}^{5} \mathrm{C}^{4} \mathrm{C}^{9} \mathrm{C}^{8}$	$0.1(4)$
$\mathrm{N}^{2} \mathrm{~N}^{1} \mathrm{C}^{3} \mathrm{O}^{1}$	$-178.5(2)$	$\mathrm{O}^{1} \mathrm{C}^{4} \mathrm{C}^{9} \mathrm{C}^{8}$	$-173.9(2)$
$\mathrm{C}^{1} \mathrm{~N}^{3} \mathrm{C}^{1}$	$5.1(4)$	$\mathrm{C}^{7} \mathrm{C}^{8} \mathrm{C}^{9} \mathrm{C}^{4}$	$0.4(4)$
$\mathrm{C}^{3} \mathrm{O}^{1} \mathrm{C}^{9}$	$-117.3(3)$		

Version 2.0 program and was refined by the fullmatrix least-squares procedure with respect to F^{2} using SHELXL97 software [27]. Nonhydrogen atoms were
refined with anisotropic temperature factors. The positions of hydrogen atoms were determined from the difference Fourier map and were refined isotropically. The crystallographic data for structure VIa were deposited to the Cambridge Crystallographic Data Center (entry no. CCDC-232963) and are available free of charge upon request to CCDC, 12 Union Road, Cambridge, UK (fax: +44-1223-336033, e-mail: deposit@ccdc.cam.ac.uk).

Methyl 5-aryloxytetrazole-2-carboxylates Ia-If were synthesized by the procedures reported in [13].

5-(4-Nitrophenoxy)tetrazole (Va). A 100-ml flask was charged with 10.0 g (62 mmol) of 5 -phenoxytetrazole (Vb), and fuming nitric acid was added dropwise over a period of 20 min under stirring and cooling with an ice bath. The cooling bath was removed, and the mixture was allowed to warm up to $25-30^{\circ} \mathrm{C}$ over a period of 20 min and was transferred into a beaker containing crushed ice under stirring in a hood. The precipitate was filtered off and recrystallized from benzene. Yield $90 \%, \mathrm{mp} 160-161^{\circ} \mathrm{C}$; published data [24]: mp $162-163^{\circ} \mathrm{C}$, yield $<10 \%$. IR spectrum (KBr), $\mathrm{v}, \mathrm{cm}^{-1}: 2500-3200 \mathrm{br}$, $\mathrm{s}, 1620,1580$, 1530, 1480, 1350, 1200, 1060, 870, 730, 670, 650. ${ }^{1} \mathrm{H}$ NMR spectrum (90 MHz, DMSO- d_{6}), δ, ppm: 14.60 br.s (1 H), $8.60 \mathrm{~d}(2 \mathrm{H}, J=9 \mathrm{~Hz}), 7.75 \mathrm{~d}(2 \mathrm{H}, J=9 \mathrm{~Hz})$.

Fig. 3. Optimized structures of 1- and 2-methylsulfanylmethyl-5-(4-nitrophenoxy)tetrazoles VIa and VIIa (ab initio calculations).

Table 4. Selected bond lengths (d, \AA) in molecules VIa and VIIa according to AM1, PM3, and ab initio calculations and experimental data for VIa

Bond	Experiment (X-ray diffraction)	AM1		PM3		Ab initio	
		1.404	1.395	1.399	1.388	1.412	1.414
$\mathrm{C}^{4}-\mathrm{O}^{1}$	$1.324(3)$	1.376	1.379	1.358	1.357	1.373	1.384
$\mathrm{O}^{1}-\mathrm{C}^{3}$	$1.326(3)$	1.419	1.372	1.392	1.353	1.399	1.386
$\mathrm{C}^{3}-\mathrm{N}^{1}$	$1.348(3)$	1.358	1.348	1.392	1.367	1.399	1.408
$\mathrm{~N}^{1}-\mathrm{N}^{2}$	$1.287(3)$	1.280	1.369	1.266	1.350	1.379	1.419
$\mathrm{~N}^{2}-\mathrm{N}^{3}$	$1.364(3)$	1.332	1.262	1.337	1.277	1.420	1.382
$\mathrm{~N}^{3}-\mathrm{N}^{4}$	$1.304(3)$	1.377	1.441	1.361	1.406	1.342	1.409
$\mathrm{~N}^{4}-\mathrm{C}^{3}$	$1.453(3)$	1.441	-	1.474	-	1.472	-
$\mathrm{N}^{1}-\mathrm{C}^{2}$	$1.788(3)$	1.773	1.769	1.824	1.824	1.815	1.815
$\mathrm{C}^{2}-\mathrm{S}^{1}$	$1.790(3)$	1.752	1.750	1.801	1.799	1.796	1.796
$\mathrm{~S}^{1}-\mathrm{C}^{1}$						VIIa	

Table 5. Selected bond angles (ω, deg) in molecules VIa and VIIa according to AM1, PM3, and ab initio calculations and experimental data for VIa

Angle	Experiment (X-ray diffraction)	AM1		PM3		Ab inilio	
		VIIa	VIa	VIIa	VIa	VIIa	
$\mathrm{C}^{2} \mathrm{~S}^{1} \mathrm{C}^{1}$	$99.79(14)$	104.18	104.20	104.01	103.83	98.74	97.18
$\mathrm{C}^{3} \mathrm{O}^{1} \mathrm{C}^{4}$	$118.43(18)$	115.14	115.40	116.63	120.31	114.81	114.39
$\mathrm{C}^{3} \mathrm{~N}^{1} \mathrm{C}^{2}$	$129.8(2)$	127.15	-	130.08	-	129.60	-
$\mathrm{N}^{2} \mathrm{~N}^{1} \mathrm{C}^{2}$	$123.21(19)$	126.95	123.30	123.36	123.76	122.14	119.40
$\mathrm{~N}^{1} \mathrm{C}^{2} \mathrm{~S}^{1}$	$114.49(17)$	115.75	-	116.33	-	111.58	-
$\mathrm{O}^{1} \mathrm{C}^{3} \mathrm{~N}^{1}$	$118.9(2)$	120.21	126.05	121.79	132.56	116.96	120.12

Table 6. Selected torsion angles (φ, deg) in molecules VIa and VIIa according to AM1, PM3, and ab initio calculations and experimental data for VIa

Angle	Experiment (X-ray diffraction)	AM1		PM3		Ab initio	
		VIa	VIIa	VIa	VIIa	VIa	VIIa
$\mathrm{C}^{2} \mathrm{~N}^{1} \mathrm{~N}^{2} \mathrm{~N}^{3}$	$177.4(2)$	179.0	-	178.5	-	174.8	-
$\mathrm{C}^{4} \mathrm{O}^{1} \mathrm{C}^{3} \mathrm{~N}^{4}$	$8.1(4)$	8.2	83.5	3.4	144.3	-3.2	109.6
$\mathrm{~N}^{2} \mathrm{~N}^{1} \mathrm{C}^{3} \mathrm{O}^{1}$	$-178.5(2)$	-179.5	-172.6	-180.0	-172.0	-178.9	-173.25
$\mathrm{C}^{2} \mathrm{~N}^{1} \mathrm{C}^{3} \mathrm{O}^{1}$	$5.1(4)$	1.6	-	2.2	-	5.1	-
$\mathrm{C}^{3} \mathrm{O}^{1} \mathrm{C}^{4} \mathrm{C}^{5}$	$68.6(3)$	125.3	44.7	126.9	22.8	129.5	-47.73
$\mathrm{O}^{1} \mathrm{C}^{4} \mathrm{C}^{5} \mathrm{C}^{6}$	$173.6(2)$	173.5	174.5	173.9	176.9	175.8	175.99

Reaction of methyl 5-(4-nitrophenoxy)tetrazole-

 2-carboxylate (Ia) with dimethyl sulfoxide. A mixture of methyl 5-(4-nitrophenoxy)tetrazole-2-carboxylate (Ia) and DMSO (taken as solvent) was stirred for 12 h at room temperature using a magnetic stirrer. The progress of the reaction was monitored by TLC (cyclo-hexane-ethyl acetate, 80:20). Excess DMSO was removed, and the residue was passed through a column charged with silica gel using cyclohexane-ethyl ace-tate ($90: 10$) as eluent. We isolated 1-methylsulfanyl-methyl-5-(4-nitrophenoxy)tetrazole (VIa), mp 67$68^{\circ} \mathrm{C}$, 2-methyl-5-(4-nitrophenoxy)tetrazole (IIIa), $\mathrm{mp} 89^{\circ} \mathrm{C}$, and 1-methyl-5-(4-nitrophenoxy)tetrazole (IVa), mp $109^{\circ} \mathrm{C}\left(108-109^{\circ} \mathrm{C}\right.$ [4]).

Reaction of 5-(4-nitrophenoxy)tetrazole (Va) with DMSO in the presence of acetic anhydride. Compound Va, 0.5 g , was dissolved in 5 ml of acetic anhydride, and 20 ml of dry DMSO was added drop-
wise over a period of 30 min . The mixture was stirred for 24 h at $55-60^{\circ} \mathrm{C}$, excess DMSO and acetic anhydride were removed under reduced pressure, and the residue was washed with several $2-3-\mathrm{ml}$ portions of water. The precipitate was dissolved in 20 ml of methylene chloride, the solution was dried over calcium chloride and evaporated, and the residue was separated by column chromatography on silica gel using ethyl acetate-cyclohexane ($80: 20$) as eluent to isolate compounds VIa and VIIa.

1-Methylsulfanylmethyl-5-(4-nitrophenoxy)tetrazole (VIa). Yield 30%, mp $67-68^{\circ} \mathrm{C}$. IR spectrum (KBr), v, cm ${ }^{-1}: 3020,1640,1610,1520,1410,1350$, 1240, 1180, 1160, 1120, 860, 710. ${ }^{1}$ H NMR spectrum $\left(500 \mathrm{MHz}, \mathrm{CDC1}_{3}\right), \delta, \mathrm{ppm}: 8.36 \mathrm{~m}(2 \mathrm{H}, J=9.5 \mathrm{~Hz})$, $7.70 \mathrm{~d}(2 \mathrm{H}, J=9.0 \mathrm{~Hz}), 5.32 \mathrm{~s}(2 \mathrm{H}), 2.33 \mathrm{~s}(3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta_{\mathrm{C}}$, ppm: 158.56, 157.08, 145.44, 125.89, 119.63, 49.21, 15.53. Mass spectrum (EI), $m / z\left(I_{\text {rel }}, \%\right): 269$ (10) $[M+2]^{+}$, 267 (47) $[M]^{+}, 192$ (75), 150 (8), 122 (28), 101 (90), 76 (33), 61 (100). Found, \%: C 40.5; H 3.5; N 26.8. $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{~N}_{5} \mathrm{O}_{3} \mathrm{~S}$. Calculated, \%: C 40.5; H 3.4; N 26.2 .

2-Methylsulfanylmethyl-5-(4-nitrophenoxy)tetrazole (VIIa). Yield 20%, mp $92-94^{\circ} \mathrm{C}$. IR spectrum (KBr), $v, \mathrm{~cm}^{-1}: 3020,2980,1620,1530,1480$, 1340, 1240, 1200, 1090, 1000, 870, 740. ${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{CCl}_{4}$, DMSO- d_{6}), $\delta: 8.40 \mathrm{~d}(2 \mathrm{H}$, $J=9.0 \mathrm{~Hz}), 7.78 \mathrm{~d}(2 \mathrm{H}, J=9.0 \mathrm{~Hz}), 5.57 \mathrm{~s}(2 \mathrm{H})$, $2.26 \mathrm{~s}(3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR spectrum ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$), δ_{C}, ppm: $159.71,158.25,145.90,126.86,121.15,49.62$, 15.60. Mass spectrum (EI), m / z ($I_{\text {rel }}, \%$): 269 (2.6) $[M+2]^{+}, 267$ (65) $[M]^{+}, 192(36), 191$ (40), 122 (30), 101 (32), 75 (28), 61 (100). Found, \%: C 40.6; H 3.6; N 27.4. $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{~N}_{5} \mathrm{O}_{3} \mathrm{~S}$. Calculated, \%: C 40.5; H 3.4; N 26.2.

Reaction of 5-phenoxytetrazole (Vb) with DMSO

 in the presence of acetic anhydride. Dry DMSO, 20 ml , was added dropwise over a period of 30 min to a solution of 0.5 g of compound $\mathbf{~ V b}$ in 5 ml of acetic anhydride. The mixture was stirred for 24 h at $45-$ $50^{\circ} \mathrm{C}$, excess DMSO and acetic anhydride were removed under reduced pressure, and the residue was washed with several small portions of water and dissolved in 20 ml of methylene chloride. The solution was dried over calcium chloride and evaporated, and the residue was separated by column chromatography on silica gel to isolate compounds VIb and VIIb.1-Methylsulfanylmethyl-5-phenoxytetrazole (VIb). Yield 26%. IR spectrum (KBr), $v, \mathrm{~cm}^{-1}: 3020$, 2993, 1510, 1490, 1410, 1200, 1020, 750, 680. ${ }^{1} \mathrm{H}$ NMR
spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$), δ, ppm: $7.31 \mathrm{~m}(5 \mathrm{H})$, $5.49 \mathrm{~s}(2 \mathrm{H}), 2.34 \mathrm{~s}(3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR spectrum (125 MHz , $\left.\mathrm{CDCl}_{3}\right), \delta_{\mathrm{C}}, \mathrm{ppm}: 171.30,154.73,130.26,125.87$, $119.55,56.86,16.25$. Mass spectrum (EI), $m / z\left(I_{\text {rel }}, \%\right)$ 224 (0.64) $[M+2]^{+}, 222$ (14) $[M]^{+}, 147$ (70), 101 (79), 77 (100), 74 (23), 61 (58). Found, \%: C 48.8; H 4.7; N 25.6. $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{OS}$. Calculated, \%: C 48.63; H 4.53; N 25.2.

2-Methylsulfanylmethyl-5-phenoxytetrazole (VIIb). Yield 16%. IR spectrum (KBr), $v, \mathrm{~cm}^{-1}: 3060$, 3000, 2920, 1550, 1490, 1310, 1250, 1190, 1160, 750, 680. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta, \mathrm{ppm}$: $7.40 \mathrm{~m}(5 \mathrm{H}), 5.32 \mathrm{~s}(2 \mathrm{H}), 2.35 \mathrm{~s}(3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR spectrum ($125 \mathrm{MHz}, \mathrm{CDC1}_{3}$), δ_{C}, ppm: 160.18, 154.71 , 130.45, 126.89, 119.60, 49.30, 15.96. Mass spectrum (EI), $m / z\left(I_{\text {rel }}, \%\right) 224(0.64)[M+2]^{+}, 222(14)[M]^{+}$, 176 (27), 147 (16), 101 (22), 77 (67), 61 (100).

Reaction of 5-(2,6-dimethoxyphenoxy)tetrazole (Vf) with DMSO in the presence of acetic anhydride. Dry DMSO, 10 ml , was added dropwise over a period of 30 min to a solution of 0.285 g of compound $\mathbf{V f}$ in 4 ml of acetic anhydride. The mixture was stirred for 40 h at $45-50^{\circ} \mathrm{C}$, excess DMSO and acetic anhydride were removed under reduced pressure, and the residue was washed with several $2-3-\mathrm{ml}$ portions of water. The precipitate was dissolved in 20 ml of methylene chloride, the solution was dried over calcium chloride and evaporated, and the residue was separated by column chromatography on silica gel to isolate compounds VIf and VIIf.

1-Methylsulfanylmethyl-5-(2,6-dimethoxyphenoxy)tetrazole (VIf). Yield 14%. IR spectrum (KBr), v, $\mathrm{cm}^{-1}: 3010,3000,2900,2840,1600,1580,1510,1480$, 1300, 1260, 1180, 1100, 750, 700. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta, \mathrm{ppm}: 7.22 \mathrm{t}(1 \mathrm{H}, J=8.5 \mathrm{~Hz})$, $6.70 \mathrm{~d}(2 \mathrm{H}, J=10 \mathrm{~Hz}), 5.46 \mathrm{~s}(2 \mathrm{H}), 3.85 \mathrm{~s}(6 \mathrm{H}), 2.33 \mathrm{~s}$ $(3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR spectrum ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$), δ_{C}, ppm: 172.01, 152.84, 132.33, 126.92, 105.73, 56.67, 56.52, 16.17. Mass spectrum (EI), $m / z\left(I_{\text {rel }}, \%\right) 284$ (1.7) $[M+2]^{+}, 282$ (43) $[M]^{+}, 207$ (34), 179 (27), 165 (70), 122 (52), 107 (88), 101 (100), 77 (47), 61 (68). Found, \%: C 48.2; H 5.3; N 17.6. $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{3}$ S. Calculated, \%: C 46.8; H 5.0; N 19.8 .

2-Methylsulfanylmethyl-5-(2,6-dimethoxyphenoxy)tetrazole (VIIf). Yield 8%. IR spectrum (KBr), v, $\mathrm{cm}^{-1}: 3000,1590,1530,1390,1370,1300,1260,1180$, 1110, 760. ${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$), δ, ppm: $7.21 \mathrm{t}(1 \mathrm{H}, J=10 \mathrm{~Hz}), 6.69 \mathrm{~d}(2 \mathrm{H}, J=10 \mathrm{~Hz})$, $5.46 \mathrm{~s}(2 \mathrm{H}), 3.87 \mathrm{~s}(6 \mathrm{H}), 2.56 \mathrm{~s}(3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR spectrum ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta_{\mathrm{C}}, \mathrm{ppm}: 178.05,152.70$,
131.81, 127.12, 105.64, 56.68, 13.58. Mass spectrum (EI), $m / z\left(I_{\mathrm{rel}}, \%\right) 284(0.6)[M+2]^{+}, 282$ (15) $[M]^{+}, 281$ (20), 236 (83), 151 (73), 140 (39), 107 (59), 43 (100).

The authors thank Isfahan University of Technology for financial support (Research Council Grant IUT-1CHI821). We also greatly acknowledge Osaka Prefecture University (Japan) for performing X-ray analysis.

REFERENCES

1. Singh, H., Chawla, A., Kapoor, V., Paul, D., and Malkurta, R., Prog. Med. Chem., 1980, vol. 77, p. 151.
2. Dabbagh, H.A. and Karimzadeh, R., Molecules, 2002, vol. 7, p. 189.
3. Dabbagh, H.A. and Gaelee, S., J. Org. Chem., 1996, vol. 61, p. 3439.
4. Dabbagh, H.A., Mansoori, Y., Jafari, M., and Rostami, M., J. Chem. Res., Synop., 2000, p. 442.
5. Huff, B.F., LeTourneau, M.E., Staszak, M.A., and Ward, J.A., Tetrahedron Lett., 1996, vol. 37, p. 3655.
6. Olofson, R.A. and Kendall, R.V., J. Org. Chem., 1970, vol. 35, p. 2246.
7. Isida, T., Akiyama, T., Nabika, K., Sisido, K., and Kosima, S., Bull. Chem. Soc. Jpn., 1973, vol. 46, p. 2176.
8. Nelson, J.H., Schmitt, D.L., Henry, R.A., Moore, D.W., and Jonassen, H.B., Inorg. Chem., 1970, vol. 9, p. 2678.
9. Ofele, K. and Kreiter, C.G., Chem. Ber., 1972, vol. 105, p. 529.
10. Markgraf, J.H., Brown, H.S., Kaplinsky, M.W., and Peterson, R.G., J. Org. Chem., 1964, vol. 29, p. 2629.
11. Hobbs, P.D. and Magnus, P.D., J. Chem. Soc., Perkin Trans. 1, 1973, p. 469.
12. Dabbagh, H.A. and Modarresi-Alam, A.R., J. Chem. Res., Synop., 2000, p. 44.
13. Dabbagh, H.A. and Lwowski, W., J. Org. Chem., 2000, vol. 65, p. 7284.
14. Dabbagh, H.A. and Mansoori, Y., Russ. J. Org. Chem., 2001, vol. 37, p. 1771.
15. Pfitzner, K.E. and Moffatt, J.G., J. Am. Chem. Soc., 1963, vol. 85, p. 3027.
16. Burdon, M.G. and Moffatt, J.G., J. Am. Chem. Soc., 1967, vol. 89, p. 4725.
17. Pfitzner, K.E., Marino, J.P., and Olofson, R.A., J. Am. Chem. Soc., 1965, vol. 87, p. 4658.
18. Moffatt, J.G., J. Org. Chem., 1971, vol. 36, p. 1909.
19. Hayashi, Y. and Oda, R., J. Org. Chem., 1967, vol. 32, p. 457.
20. Huang, S.L., Omura, K., and Swern, D., J. Org. Chem., 1976, vol. 41, p. 3329.
21. Mancuso, A.J., Huang, S.-L., and Swern, D., J. Org. Chem., 1978, vol. 43, p. 2480.
22. Gassman, P.G. and Gruetzmacher, G., J. Am. Chem. Soc., 1973, vol. 95, p. 588.
23. Gassman, P.G. and van Bergen, T.J., J. Am. Chem. Soc., 1973, vol. 95, p. 590.
24. Martin, D. and Weise, A., Chem. Ber., 1966, vol. 99, p. 317.
25. Hatman, W.W. and Dreger, E.E., Org. Synth., 1943, collect. vol. 2, p. 150.
26. Grigate, E. and Putter, R., Chem. Ber., 1964, vol. 97, p. 3012.
27. Sheldrick, G.M., SHELXL97, Göttingen: Univ. of Göttingen, 1997.

[^0]: * The original article was submitted in English.

[^1]: ${ }^{\mathrm{a}}$ Hereinafter, for atom numbering, see Fig. 2.

